Publications

2 Publications matching the given criteria: (Clear all filters)
Published year: 20132

Abstract (Expand)

We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sample with individual resolution, characterizes the subtypes, disentangles the expression patterns into distinct modules, extracts their functional context using enrichment techniques and enables investigation of the similarity relations between the samples. The method also allows to detect and to correct outliers caused by contaminations. Based on our analysis, we propose a refined classification of B-cell Lymphoma into four molecular subtypes which are characterized by differential functional and clinical characteristics.

Authors: L. Hopp, K. Lembcke, H. Binder, H. Wirth

Date Published: 2nd Dec 2013

Publication Type: Not specified

Human Diseases: non-Hodgkin lymphoma, B-cell lymphoma

Abstract (Expand)

The systematic analysis of miRNA expression and its potential mRNA targets constitutes a basal objective in miRNA research in addition to miRNA gene detection and miRNA target prediction. In this chapter we address methodical issues of miRNA expression analysis using self-organizing maps (SOM), a neural network machine learning algorithm with strong visualization and second-level analysis capabilities widely used to categorize large-scale, high-dimensional data. We shortly review selected experimental and theoretical aspects of miRNA expression analysis. Then, the protocol of our SOM method is outlined with special emphasis on miRNA/mRNA coexpression. The method allows extracting differentially expressed RNA transcripts, their functional context, and also characterization of global properties of expression states and profiles. In addition to the separate study of miRNA and mRNA expression landscapes, we propose the combined analysis of both entities using a covariance SOM.

Authors: H. Wirth, M. V. Cakir, L. Hopp, H. Binder

Date Published: 26th Nov 2013

Publication Type: Not specified

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies