Publications

2 Publications matching the given criteria: (Clear all filters)
Author: Frauke Beyer2

Abstract (Expand)

Obesity is a complex neurobehavioral disorder that has been linked to changes in brain structure and function. However, the impact of obesity on functional connectivity and cognition in aging humans is largely unknown. Therefore, the association of body mass index (BMI), resting-state network connectivity, and cognitive performance in 712 healthy, well-characterized older adults of the Leipzig Research Center for Civilization Diseases (LIFE) cohort (60-80 years old, mean BMI 27.6 kg/m(2) +/- 4.2 SD, main sample: n = 521, replication sample: n = 191) was determined. Statistical analyses included a multivariate model selection approach followed by univariate analyses to adjust for possible confounders. Results showed that a higher BMI was significantly associated with lower default mode functional connectivity in the posterior cingulate cortex and precuneus. The effect remained stable after controlling for age, sex, head motion, registration quality, cardiovascular, and genetic factors as well as in replication analyses. Lower functional connectivity in BMI-associated areas correlated with worse executive function. In addition, higher BMI correlated with stronger head motion. Using 3T neuroimaging in a large cohort of healthy older adults, independent negative associations of obesity and functional connectivity in the posterior default mode network were observed. In addition, a subtle link between lower resting-state connectivity in BMI-associated regions and cognitive function was found. The findings might indicate that obesity is associated with patterns of decreased default mode connectivity similar to those seen in populations at risk for Alzheimer's disease. Hum Brain Mapp 38:3502-3515, 2017. (c) 2017 Wiley Periodicals, Inc.

Authors: F. Beyer, S. Kharabian Masouleh, J. M. Huntenburg, L. Lampe, T. Luck, S. G. Riedel-Heller, M. Loeffler, M. L. Schroeter, M. Stumvoll, A. Villringer, A. V. Witte

Date Published: 12th Apr 2017

Publication Type: Journal article

Human Diseases: obesity

Abstract (Expand)

The disparity between the chronological age of an individual and their brain-age measured based on biological information has the potential to offer clinically relevant biomarkers of neurological syndromes that emerge late in the lifespan. While prior brain-age prediction studies have relied exclusively on either structural or functional brain data, here we investigate how multimodal brain-imaging data improves age prediction. Using cortical anatomy and whole-brain functional connectivity on a large adult lifespan sample (N=2354, age 19-82), we found that multimodal data improves brain-based age prediction, resulting in a mean absolute prediction error of 4.29 years. Furthermore, we found that the discrepancy between predicted age and chronological age captures cognitive impairment. Importantly, the brain-age measure was robust to confounding effects: head motion did not drive brain-based age prediction and our models generalized reasonably to an independent dataset acquired at a different site (N=475). Generalization performance was increased by training models on a larger and more heterogeneous dataset. The robustness of multimodal brain-age prediction to confounds, generalizability across sites, and sensitivity to clinically-relevant impairments, suggests promising future application to the early prediction of neurocognitive disorders.

Authors: F. Liem, G. Varoquaux, J. Kynast, F. Beyer, S. Kharabian Masouleh, J. M. Huntenburg, L. Lampe, M. Rahim, A. Abraham, R. C. Craddock, S. Riedel-Heller, T. Luck, M. Loeffler, M. L. Schroeter, A. V. Witte, A. Villringer, D. S. Margulies

Date Published: 1st Mar 2017

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies